HITACHI

Inspire the Next

GIII 1 saries

for Fan and Pump Applications

Hitachi's L300P Ser ies Var iable Fr e quency Dr ive Delivers Incr eased Ener gy Savings for Your Fan and Pump Applications!

WIDERANGO FAPPLCATIONSPEGIFIGFUGTIONS FOROPTIWAL OPERATION

-AUTOMATIC ENERGY-SAVING FUNCTION

With its Automatic Energy-saving Function, the L300P delivers "real-time" energy-saving operation for your fan and pump applications. The function insures that motor operates at minimum current in response to the torque required by the load.

-ENHANCED INPUT/OUTPUT TERMINALS
Three relay output terminals are provided as standard for flexible interface to external control systems.

mintelelgent relay outputs | | 12 C | 12 A | 11 C | 11 A | ALO | AL1 | AL2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\lfloor\overline{0-1}$ $\xrightarrow[\text { Nocontact } X_{2}]{-\infty}$

-ANALOG OUTPUT MONITOR

In addition to PWM monitor(FM), programmable analog output monitors are also available for both voltage $(0-10 \mathrm{VDC})$ and current $(4-20 \mathrm{~mA})$ at AM and AMI terminals of the L300P.
-INTELLIGENT INPUT/OUTPUT TERMINAL SYSTEM

The L300P features an intelligent contro terminal system, which allows necessary drive /O functions to be freely programmed. ted for either sink or source type logic.

OEASY-TO-USE OPERATOR PANEL

L300P's digital operator panel supports various monitoring functions.

- Output frequency
- Output current
- Rotation direction
- Process variable, PID feedback
- Intelligent input terminal status
- Intelligent output terminal status
- Scaled output frequency
\bullet Output voltage
- Power
- Cumulative RUN time

Cumulative power-on time

- Trip event
- Warning cod

CONTENTS

DIMENSIONS	$8-11$
OPERATION and PROGRAMMING	12
FUNCTION LIST	$13-16$
TERMINALS	$17-18$
PROTECTIVE FUNCTIONS	19
CONNECTING DIAGRAM	$20-21$
CONNECTING TO PLC	22
WIRING and ACCESSORIES	23
ACCESSORIES	$24-26$
FOR COMPACT PANEL	27
TORQUE CHARACTERISTIS, DERATING DATA	28

FOR CORRECT OPERATION \qquad

- 30

ISO 14001	Hitachi variable frequency drives (inverters) in this brochure are produced at the factory registered under the ISO 14001 standard for environmental management system and the ISO 9001 standard for inverter quality
-	
Iso	
ISO 90001	

CISE OF MANIIENTCE

-EASY-REMOVABLE COOLING FAN AND DC BUS CAPACITOR

Cooling fan(s) and DC bus capaci-tors can be easily changed in the field. A fan ON/OFF function can be activated to provide longer cooling fan life.

-REMOVABLE CONTROL CIRCUIT TERMINALS

Eliminates control rewiring when field replacing the L300P.

BONP:HT DESITN

The L300P's compact size helps economize panel space. Installation area is reduced by approximately 30% from that of our previous series.
(Comparison of 11 kW (15HP))

USERFFRIENDIY OPERATION

-EASE OF OPERATION WTH DIGITAL OPERATOR (OPE-SR)

Output frequency can be controlled by the integral potentiometer provided as standard on the OPE-SR.
The OPE-SR can be removed for remote control, and has an easy-to-see 4 -digit display and LEDs to indicate the unit being monitored (i.e. frequency, amps, power, etc.). A multilingual operator (English, French, German, Italian, Spanish, and Portuguese) with copy function (SRWOEX) and a digital operator without potentiometer (OPES) are also available as options.

-USER SELECTION OF COMMAND FUNCTIONS ("Quick Menu")

You can select frequently used commands and store them for fast reference.

- BUILT-IN RS485

RS485 is provided as standard for ASCII serial communication.

-PROGRAMMING SOFTWARE

Optional PC drive configuration software which runs on Windows® Operating System.

-EMI FILTER

EMI filters to meet European EMC (EN61800-3, EN55011) and low-voltage directive (EN50178) are available for system conformance.

-REDUCED NOISE FROM MAIN CIRCUIT POWER SUPPLY AND CONTROL CIRCUIT POWER SUPPLY

Disturbance voltage of the main circuit power supply and of the control circuit power supply has been improved by approximately $15 \mathrm{~dB}(\mu \mathrm{~V})$ and $20 \mathrm{~dB}(\mu \mathrm{~V})$ respectively compared to our previous model(J300), resulting in significant reductions to noise interference with sensors and other peripheral devices.

- Disturbance voltage of the main circuit power supply (It does not comply with European EMC directive. To meet the EMC directive, please use an EMI filter.)

- Disturbance voltage of the control circuit power supply (Disturbance voltage of terminal L or CM1)

-COUNTERMEASURE AGAINST HARMONICS

DC reactor connection terminals are provided as standard for harmonics suppression.

PROIEGION FOR VIRROUS WSTLIATOO ENHRONENTS

Standard enclosure protection for the L300P is IP20 (NEMA1*). For IP54 (NEMA12), please contact Hitachi sales office.
*NEMA 1 applies up to 30 kW . An optional wire-entry conduit box is required for 37 kW to 75 kW models to meet NEMA 1 rating.

CLDBLL PERTRMNWE

-CONFORMITY TO GLOBAL STANDARDS

CE, ULL, c-UL, C-Tick approvals.

NETWORK COMPATIBILITY

The L300P can communicate with DeviceNet ${ }^{\text {TM }}$, PROFIBUS®, LONWORKS®, Modbus ${ }^{\circledR}$ RTU**, and Ethernet ${ }^{T \mathrm{M}^{+} 2}$ with communication options.
*1, *2: Being planned

- MODEL NAME INDICATION

MODEL CONFIGURATION

Applicable Motor Capaci in kW (HP)	3 -phase 200V class	3 -phase 400 V class
1.5(2)	L300P-015LFU2	L300P-015HFU2/E2
2.2(3)	L300P-022LFU2	L300P-022HFU2/E2
3.7(5)	L300P-037LFU2	L300P-040HFU2/E2
5.5(7.5)	L300P-055LFU2	L300P-055HFU2/E2
7.5(10)	L300P-075LFU2	L300P-075HFU2/E2
11(15)	L300P-110LFU2	L300P-110HFU2/E2
15(20)	L300P-150LFU2	L300P-150HFU2/E2
18.5(25)	L300P-185LFU2	L300P-185HFU2/E2
22(30)	L300P-220LFU2	L300P-220HFU2/E2
30(40)	L300P-300LFU2	L300P-300HFU2/E2
37(50)	L300P-370LFU2	L300P-370HFU2/E2
45(60)	L300P-450LFU2	L300P-450HFU2/E2
55(75)	L300P-550LFU2	L300P-550HFU2/E2
75(100)	L300P-750LFU2	L300P-750HFU2/E2
90(125)		L300P-900HFU2/E2
110(150)		L300P-1100HFU2/E2
132(175)		L300P-1320HFU2/E2

[^0]- DeviceNet is a trademark of Open DeviceNet Vendor Association.
- PROFIBUS is a registered trademark of Profibus Nutzer Organization

STANDARD SPECIFICATIONS

[^1]* 2: The protection method conforms to JEM 1030 / NEMA(U.S.)
* 3 : The applicable motor refers to Hitachi standard 3 -phase motor (4 -pole). To use other motors, care must be taken to prevent the rated motor current $(5 \mathrm{~Hz}$) from exceeding the rated output current of the inverter.
* 4: The output voltage decreases as the main power supply voltage decreases except for the use of AVRfunction.
* 5 : To operate the motor beyond $50 / 60 \mathrm{~Hz}$, please consult with the motor manufacturer about the maximum allowable rotation speed.
*6: Braking resistor is not integrated in the inverter. Please install optional braking resistor or dynamic braking unit when large braking torque is required.
* 7: Storage temperature refers to the temperature in transportation
*8: Conforms to the test method specified in JIS C0040(1999).
* 9 : When using the inverter from 40° to $50^{\circ} \mathrm{C}$ ambient, the output current of the inverter must be derated (see the next section on derating curves).
* 10 : When using the inverter in a dust-prone area, we recommend the optional varnish coating specification for the inverter.

Item			400V Class									
$\begin{aligned} & \text { Model } \\ & \text { L300P-XXX } \end{aligned}$		UL version	015HFU2	022HFU2	040HFU2	055HFU2	075HFU2	110HFU2	150HFU2	185HFU2	220HFU2	300HFU2
		CE version	015HFE2	022HFE2	040HFE2	055HFE2	075HFE2	110HFE2	150HFE2	185HFE2	220HFE2	300HFE2
Enclosure (*2)			IP20 (NEMA 1) (*1)									
Applicable motor (4-pole, kW(HP)) (*3)			1.5(2)	2.2(3)	4.0(5)	5.5(7.5)	7.5(10)	11(15)	15(20)	18.5(25)	22(30)	30(40)
Rated capacity (kVA)		400 V	2.6	3.6	5.9	8.3	11	15.2	20.0	25.6	29.7	39.4
		480 V	3.1	4.4	7.1	9.9	13.3	18.2	24.1	30.7	35.7	47.3
Rated input voltage			3 -phase (3-wire) $380-480 \mathrm{~V}(\pm 10 \%$), $50 / 60 \mathrm{~Hz}$									
Rated input current (A)			4.2	5.8	9.5	13	18	24	32	41	47	63
Required power supply capacity (kVA)			4.4			11	15	22	30	37	44	60
Rated output voltage (*4)			3 -phase (3-wire) 380-480V (Corresponding to input voltage)									
Rated output current (continuous)(A)			3.8	5.3	8.6	12	16	22	29	37	43	57
Control method			Line to line sine wave PWM									
Otput frequency range (*5)			$0.1-400 \mathrm{~Hz}$									
Frequen	cy accuracy		Digital: $\pm 0.01 \%$ of the maximum frequency, Analog: $\pm 0.2 \%\left(25 \pm 10^{\circ} \mathrm{C}\right)$									
Frequency resolution			Digital setting: 0.01 Hz , Analog setting: (Maximum frequency)/4,000 (0 terminal: 12 -bit 0-10V, 02 terminal: 12-bit-10-+10V)									
V/f characteristics			V/f optionally variable, V/f control (Constant torque, reduced torque)									
Overload capacity			120\% for 60sec., 150% for 0.5 sec .									
Acceleration/deceleration time			0.01-3,600sec. (Linear/curve, accel./decel. selection), Two-stage accel./decel.									
Braking	Dynamic braking (Short-time) (*6)		Built-in BRD circuit(optional resistor)							External dynamic braking unit (option)		
	DC braking		Performs at start; under set frequency at deceleration, or via an external input (braking force, time, and operating frequency).									
Input signal	Frequency setting	Operator	Up and Down keys									
		Potentiometer	Potentiometer									
		External signal	DC 0-10V, $-10-+10 \mathrm{~V}$ (input impedance 10ks), 4-20mA (input impedance 100Ω)									
		External port	RS-485 interface									
	Forward reverse Start/stop	Operator	Run key/Stop key (FW/RV can be set by function command.)									
		External signal	FW RUN/STOP (NO contact), RV set by terminal assignment (NO/NC selection), 3 -wire input available									
		External port	Set by RS-485									
	Intelligent input terminals (Assign five functions to terminals)		RV(Reverse), CF1-CF4(Multispeed command), JG(Jogging), DB(External DC braking), SET(Second motor constants setting), 2CH(Second accel./decel.), FRS(Free-run stop), EXT(External trip), USP(Unattended start protection), CS(Change to/from commercial power supply),SFT(Software lock), AT(Analog input selection), RS(Reset), STA(3-wire start), STP(3-wire stop), F/R(3-wire fwd./rev.), PID(PID On/Off), PIDC(PID reset), UP/DWN(Remote-controlled accel./decel.) UDC(Remote-controlled data clearing), SF1-SF7(Multispeed bit command 1-7), OLR(Overload limit change), ROK(RUN Permissive) and NO(Not selected)									
	Thermistor input		One terminal(PTC)									
Output signal	Intelligent output terminals		Assign three functions to two NO contacts and one NO-NC combined contact (RUN, FA1, FA2, OL, OD, AL, FA3, IP, UV, RNT, ONT RMD and THM)									
	Intelligent monitor output terminals		Analog voltage, analog current, PWM output									
Display monitor			Output frequency, output current, scaled value of output frequency, trip history, //O terminal condition, input power, output voltage									
Other user-settable parameters			V/f free-setting (up to 7 points), frequency upper/lower limit, frequency jump, accel./decel. curve selection, manual torque boost value and frequency adjustment, analog meter tuning, starting frequency, carrier frequency, electronic thermal protection level, external frequency output zero/span reference, external frequency input bias start/end, analog input selection, retry after trip, reduced voltage soft start, overload restriction, automatic energy-saving									
Carrier frequency range			$0.5-12 \mathrm{kHz}$									
Protective functions			Over-current protection, overload protection, braking resistor overload protection, over-voltage protection, EEPROM error, under-voltage error, CT(Current transformer) error, CPU error, external trip, USP error, ground fault, input overvoltage protection, instantaneous power failure, option 1 connection error, option 2 connection error, inverter thermal trip, phase failure detection, IGBT error, thermistor error									
Environmental conditions	Ambient operating/storage temperaure * 7 7)humidity		$-10-40^{\circ} \mathrm{C}$ (*9) / $-20-65^{\circ} \mathrm{C} / 25-90 \% \mathrm{RH}$ (No condensation)									
	Vibration (*8)		$5.9 \mathrm{~m} / \mathrm{s}^{2}(0.6 \mathrm{G}), 10-55 \mathrm{~Hz}$									
	Location (*10)		Altitude $1,000 \mathrm{~m}$ or less, indoors (no corrosive gases or dust)									
Color			Blue									
Options			EMI filters, input/output reactors, DC reactors, radio noise filters, braking resistors, braking units, LCR filter, communication cables, Network interface cards									
Operator			OPE-SR(4-digit LED with potentiometer) / OPE-SRE(4-digit LED with potentiometer, English overlay) Optional: OPE-S(4-digit LED), SRW-OEX(Multilingual (English,French, German, Italian, Spanish, and Portuguese) operator with copy function), ICS-1,3(Cable for operators($1 \mathrm{~m}, 3 \mathrm{~m}$))									
Weight kg (lbs.)			3.5 (7.7)	3.5 (7.7)	3.5 (7.7)	3.5 (7.7)	5 (11)	5(11)	5 (11)	12 (26.4)	12 (26.4)	12 (26.4)

[^2]* 4: The output voltage decreases as the main power supply voltage decreases except for the use of AVR function.
*5: To operate the motor beyond $50 / 60 \mathrm{~Hz}$, please consult with the motor manufacturer about the maximum allowable rotation speed.
* 6: Braking resistor is not integrated in the inverter. Please install optional braking resistor or dynamic braking unit when large braking torque is required.
* 7: Storage temperature refers to the temperature in transportation. * 8: Conforms to the test method specified in JIS COO40(1999).
* 9 : When using the inverter from 40° to $50^{\circ} \mathrm{C}$ ambient, the output current of the inverter must be derated (see the next section on derating curves).
* 10: When using the inverter in a dust-prone area, we recommend the optional varnish coating specification for the inverter.

STANDARD SPECIFICATIONS

Item			400V Class						
$\begin{aligned} & \text { Model } \\ & \text { L300P-XXX } \end{aligned}$		UL version	370HFU2	450HFU2	550HFU2	750HFU2	900HFU2	1100HFU2	1320HFU2
		CE version	370HFE2	450HFE2	550HFE2	750HFE2	900HFE2	1100HFE2	1320HFE2
Enclosure (*2)			IP20 (NEMA 1) (*1)				IP00		
Applicablemotor (4-pole, $\mathrm{kW}(\mathrm{HP)})$ (* 3)			37(50)	45(60)	55(75)	75(100)	90 (125)	110 (150)	132 (175)
Rated capacity (kVA)		400 V	48.4	58.8	72.7	93.5	110.8	135.0	159.3
		480 V	58.1	70.1	87.2	112.2	133.0	162.1	191.2
Rated input voltage			3-phase (3-wire) $380-480 \mathrm{~V}(\pm 10 \%), 50 / 60 \mathrm{~Hz}$						
Rated input current (A)			77	94	116	149	176	215	253
Required power supply capacity (kVA)			74 90 110			150	180	220	264
Rated output voltage (*4)			3 -phase (3-wire) 380-480V (Corresponding to input voltage)						
Rated output current (continuous)(A)			70	85	105	135	160	195	230
Control method			Line to line sine wave PWM						
Output frequency range (*5)			$0.1-400 \mathrm{~Hz}$						
Frequency accuracy			Digital: $\pm 0.01 \%$ of the maximum frequency, Analog: $\pm 0.2 \%\left(25 \pm 10^{\circ} \mathrm{C}\right)$						
V/f characteristics			Digital setting: 0.01 Hz , Analog setting: (Maximum frequency)/4,000 (0terminal: 12 -bit 0-10V, 02 terminal: 12-bit-10-+10V)						
			V/f optionally variable, V/f control (Constant torque, reduced torque)						
Overload capacity			120\% for 60sec., 150% for 0.5sec.						
Acceleration/deceleration time			$0.01-3,600$ sec. (Linear/curve, accel./decel. selection), Two-stage accel./decel.						
Braking	Dynamic braking (Short-time) (*6)		External dynamic braking unit (option)						
	DC braking		Performs at start; under set frequency at deceleration, or via an external input (braking force, time, and operating frequency).						
Input signal	Frequency setting	Operator	Up and Down keys						
		Potentiometer	Potentiometer						
		External signal	DC 0-10V, $-10-+10 \mathrm{~V}$ (input impedance 10k Ω), 4-20mA (input impedance 100Ω)						
		External port	RS-485 interface						
	Forward/ reverse Start/stop	Operator	Run key/Stop key (FW/RV can be set by function command.)						
		External signal	FW RUN/STOP (NO contact), RV set by terminal assignment (NO/NC selection), 3-wire input available						
		External port	Set by RS-485						
	Intelligent input terminals (Assign five functions to terminals)		RV(Reverse), CF1-CF4(Multispeed command), JG(Jogging), DB(External DC braking), SET(Second motor constants setting), 2CH(Second accel./decel.), FRS(Free-run stop), EXT(External trip), USP(Unattended start protection), CS(Change to/from commercial power supply),SFT(Software lock), AT(Analog input selection), RS(Reset), STA(3-wire start), STP(3-wire stop), F/R(3-wire fwd./rev.), PID(PID On/Off), PIDC(PID reset), UP/DWN(Remote-controlled accel./decel.) UDC(Remote-controlled data clearing), SF1-SF7(Multispeed bit command 1-7), OLR(Overload limit change), ROK(RUN Permission) and NO(Not selected)						
	Thermistor input		One terminal(PTC)						
Output signal	Intelligent output terminals		Assign three functions to two NO contacts and one NO-NC combined contact (RUN, FA1, FA2, OL, OD, AL, FA3, IP, UV, RNT, ONT, RMD and THM)						
	Intelligent monitor output terminals		Analog voltage, analog current, PWM output						
Display monitor			Output frequency, output current, scaled value of output frequency, trip history, I/O terminal condition, input power, output voltage						
Other user-settable parameters			V/f free-setting (up to 7 points), frequency upper/lower limit, frequency jump, accel./decel. curve selection, manual torque boost value and frequency adjustment, analog meter tuning, starting frequency, carrier frequency, electronic thermal protection level, external frequency output zero/span reference, external frequency input bias start/end, analog input selection, retry after trip, reduced voltage soft start, overload restriction, automatic energy-saving						
Carrier frequency range			$0.5-12 \mathrm{kHz}$				$0.5-8 \mathrm{kHz}$		
Protective functions			Over-current protection, overload protection, braking resistor overload protection, over-voltage protection, EEPROM error, under-voltage error, CT(Current transformer) error, CPU error, external trip, USP error, ground fault, input overvoltage protection, instantaneous power failure, option 1 connection error, option 2 connection error, inverter thermal trip, phase failure detection, IGBT error, thermistor error						
Environmenta conditions	Ambient operating/storage temperature(*7)/humidity		$-10-40^{\circ} \mathrm{C}$ (*9) / $-20-65^{\circ} \mathrm{C} / 25-90 \% \mathrm{RH}$ (No condensation)						
	Vibration (*8)		$2.9 \mathrm{~m} / \mathrm{s}^{2}(0.3 \mathrm{G}), 10-55 \mathrm{~Hz}$						
	Location (*10)		Altitude $1,000 \mathrm{~m}$ or less, indoors (no corrosive gases or dust)						
Color			Gray (Bezel for digital operator is blue)						
Options			EMI filters, input/output reactors, DC reactors, radio noise filters, braking resistors, braking units, LCR filter, communication cables, Network interface cards						
Operator			OPE-SR(4-digit LED with potentiometer) / OPE-SRE(4-digit LED with potentiometer, English overlay) Optional: OPE-S(4-digit LED), SRW-OEX(Multilingual (English,French, German, Italian, Spanish, and Portuguese) operator with copy function), ICS-1,3(Cable for operators($1 \mathrm{~m}, 3 \mathrm{~m}$))						

Weight kg (lbs.)	$20(44)$	$30(66)$	$30(66)$	$30(66)$	$60(132)$	$60(132)$	$80(176)$

1: Up to 30kW.

An optional conduit box is required for 37 kW to 55 kW to meet NEMA 1

* 2: The protection method conforms to JEM 1030 / NEMA(U.S.)
* 3: The applicable motor refers to Hitachi standard 3-phase motor (4-pole). To use other motors, care must be taken to prevent the rated motor current $(50 \mathrm{~Hz})$ from exceeding the rated output current of the inverter.
* 4: The output voltage decreases as the main power supply voltage decreases except for the use of AVR function.
* 5 : To operate the motor beyond $50 / 60 \mathrm{~Hz}$, please consult with the motor manufacturer about the maximum allowable rotation speed.
* 6: Braking resistor is not integrated in the inverter. Please install optional braking resistor or dynamic braking unit when large braking torque is required.
* 7: Storage temperature refers to the temperature in transportation.
* 8: Conforms to the test method specified in JIS C0040(1999).
* 9 : When using the inverter from 40° to $50^{\circ} \mathrm{C}$ ambient, the output current of the inverter must be derated (see the next section on derating curves).
* 10: When using the inverter in a dust-prone area, we recommend the optional varnish coating specification for the inverter.

DIM ENSIONS

L300P-075-150LFU2, 075-150HFE2, 075-150HFU2

[Unit:mm (inch)] Inches for reference only

[Unit:mm (inch)] Inches for reference only

DIMENSIONS

- L300P-185-300LFU2,
[Unit:mm (inch)]
185-300HFE2,
Inches for reference only 185-300HFU2

© L300P-370LFU2, 370HFE2, 370HFU2

Conduit box to meet NEMA1 rating (Optional)

- L300P-450-550LFU2, 450-750HFE2, 32.5(1.28) 80(3.15) 450-750HFU2

[Unit:mm (inch)] Inches for reference only

DIMENSIONS

-L300P-900HFE2, HFU2

L300P-1320HFE2, HFU2

[Unit:mm (inch)] Inches for reference only

[Unit:mm (inch)] Inches for reference only

OPERATION and PROGRAMMING

L300P Series can be easily operated with the digital operator (OPE-SR) provided as standard. The Digital operator can also be detached and used for remote-control. A multilingual (English, French, German Italian, Spanish, and Portuguese) operator with copy function (SRW-OEX) or a digital operator without potentiometer(OPE-S) is also available as an option. (For US version, OPE-SRE (English overlay with potentiometer) is provided as standard.)

Parameter Display
Displays frequency, motor current, rotational speed of the motor, and an alarm code.

Power LED

Lights when the power input to the drive is ON .

Display Unit LEDs

Indicates the unit associated with the parameter display.

Potentiometer

Store Key

Press to write the new value to the EEPROM.
Up/Down Keys
Press up or down to sequence through parameters and functions shown on the display, and increment/decrement values.

1. Setting the maximum output frequency

(6)Preset value is displayed.
(5) 1 R10

appears.
2. Running the motor(by potentiometer)
(8)Returns to the setting is complete.

*To run the motor, go back to monitor mode or basic setting mode.

3. Monitoring output current value

FUNCTION LIST

Monitoring Functions and Main Profile Parameters

Code		Name	Description	Default Setting		Run－time Setting	Rn－ime Data Efit （Frabledat bo3i）	
		－FE（CE）		－FU2（UL）				
	d001		Output frequency monitor	0．00－99．99／100．0－400．0Hz	－	－	－	－
	d002	Output current monitor	0．0－999．9A	－	－	－	－	
	d003	Motor rotational direction monitor	F（Forward）／o（Stop）／r（Reverse）	－	－	－	－	
	d004	Process variable（PV），PID feedback monitor	0．00－99．99／100．0－999．9／1000．－9999．／1000－9999／Г100－Г999（10，000－99，900）	－	－	－	－	
	d005	Intelligent input terminal status		－	－	－	－	
	d006	Intelligent output terminal status	\square $A L$ ＿－	－	－	－	－	
	d007	Scaled output frequency monitor	0．00－99．99／100．0－999．9／1000．－9999．／1000－3996（10，000－39，960）	－	－	－	－	
	d013	Output voltage monitor	0．0－600．0V	－	－	－	－	
	d014	Power monitor	0．0－999．9kW	－	－	－	－	
	d016	Cumulative RUN time monitor	0．－9999．／1000－9999／Г100－「999（10，000－99，900）hr	－	－	－	－	
	d017	Cumulative power－on time monitor	0．－9999．／1000－9999／Г100－「999（10，000－99，900）hr	－	－	－	－	
	d080	Trip count monitor	0．－9999．／1000－6553（10，000－65，530）	－	－	－	－	
	$\begin{aligned} & \mathrm{d} 081 \\ & \mathrm{~d} 086 \end{aligned}$	Trip monitor 1－6	Displays trip event information	－	－	－	－	
	d090	Warning monitor	Warning code	－	－	－	－	
$\begin{aligned} & \text { O} \\ & \sum_{0}^{0} \\ & \text { O } \\ & \text { 흥 } \\ & \text { © } \end{aligned}$	F001	Output frequency setting	0．0，Starting frequency to maximum frequency／maximum frequency for second motor	0.00 Hz	0.00 Hz	\bigcirc	\bigcirc	
	F002	Acceleration time（1）setting	0．01－99．99／100．0－999．9／1000．－3600．sec．	30．00s	60．00s	\bigcirc	\bigcirc	
	F202	Acceleration time（1）setting for second motor	0．01－99．99／100．0－999．9／1000．－3600．sec．	30．00s	60．00s	\bigcirc	\bigcirc	
	F003	Deceleration time（1）setting	0．01－99．99／100．0－999．9／1000．－3600．sec．	30．00s	60．00s	\bigcirc	\bigcirc	
	F203	Deceleration time（1）setting for second motor	0．01－99．99／100．0－999．9／1000．－3600．sec．	30．00s	60．00s	\bigcirc	\bigcirc	
	F004	Motor rotational direction setting	00（Forward）／ 01 （Reverse）	00	00	\times	\times	
	A－－－	A Group：Standard functions						
	b－－－	b Group：Fine tuning functions						
	C－－－	C Group：Intelligent terminal functions						
	H－－－	H Group：Motor constants functions						
	P－－－	P Group：Expantion card functions						
	U－－－	U Group：User－selectable menu functions						

A Group：Standard Functions

Code		Name	Description	Default Setting		Run－time Setting	Rn－ime Data ${ }^{2}$ it （Enableda bo3i）	
		－FE（CE）		－FU2（UL）				
	A001		Frequency source setting	00（Potentiometer）／01（Terminals）／02（Operator）／03（RS485）／ 04 （Expansion card 1）／05（Expansion card 2）	01	01	\times	\times
	A002	Run command source setting	01（Terminals）／02（Operator）／03（RS485）／ 04 （Expansion card 1）／05（Expansion card 2）	01	01	\times	\times	
亜	A003	Base frequency setting	30.00 Hz －Maximum frequency	50.	60.	\times	\times	
0	A203	Base frequency setting for second motor	30.00 Hz －Maximum frequency for second motor	50.	60.	\times	\times	
$\begin{aligned} & \mathbb{\pi} \\ & \end{aligned}$	A004	Maximum frequency setting	$30.00-400.0 \mathrm{~Hz}$	50.	60.	\times	\times	
	A204	Maximum frequency setting for second setting	$30.00-400.0 \mathrm{~Hz}$	50.	60.	\times	\times	
	A005	AT selection	00 （Selection between O and OI at AT）／ 01 （Selection between O and O2 at AT）	00	00	\times	\times	
들	A006	O2 selection	00 （Independent）／01（Only positive）／02（Both positive and negative）	00	00	\times	\times	
©	A011	O－L input active range start frequency	$0.00-400.0 \mathrm{~Hz}$	0.00	0.00	\times	\bigcirc	
$\stackrel{3}{7}$	A012	O－L input active range end frequency	$0.00-400.0 \mathrm{~Hz}$	0.00	60.00	\times	\bigcirc	
든	A013	O－L input active range start voltage	0．－100．\％	0.	0.	\times	\bigcirc	
$\frac{\mathrm{O}}{\mathbf{0}}$	A014	O－L input active range end voltage	0．－100．\％	100.	100.	\times	\bigcirc	
$\stackrel{\substack{\mathrm{x}}}{\substack{2}}$	A015	O－L input start frequency enable	00（External frequency output zero reference）／ $01(0 \mathrm{~Hz}$ ）	01	01	\times	\bigcirc	
	A016	External frequency filter time constant	1．－30．（Sampling time $=2 \mathrm{msec}$ ．）	8.	8.	\times	\bigcirc	
	A019	Multispeed operation selection	00（Binary：up to 16－stage speed at 4 terminals）／ 01 （Bit：up to 6 －stage speed at 5 terminals）	00	00	\times	\times	
	A020	Multispeed frequency setting（0）	0．00，Starting frequency to maximum frequency	0.00	0.00	\bigcirc	\bigcirc	
	A220	Multispeed frequency setting（0）for second motor	0．00，Starting frequency to maximum frequency for second motor	0.00	0.00	\bigcirc	\bigcirc	
	$\begin{gathered} \mathrm{A} 021 \\ \mathrm{I} \\ \mathrm{~A} 035 \end{gathered}$	Multispeed frequency setting（1－15）	0．00，Starting frequency to maximum frequency	0.00	0.00	\bigcirc	\bigcirc	
	A038	Jog frequency setting	0.00 ，Starting frequency to 9.99 Hz	1.00	1.00	\bigcirc	\bigcirc	
	A039	Jog stop mode	$00($ Free－run stop／disable during RUN）／01（Deceleration to stop／disable during RUN）／ 02（DC braking to stop／disable during RUN）／03（Free－run stop／enable during RUN）／ 04（Deceleration to stop／enable during RUN）／05（DC braking to stop／enable during RUN）	00	00	\times	\bigcirc	

						$\left[\begin{array}{l} \bigcirc=\text { Allowed } \\ X=\text { Not permitted } \end{array}\right]$		
Code		Name	Description	Default Setting		Run-time Setting	An-time Data Eit (Enabledabo31)	
		-FE(CE)		-FU2(UL)				
V/f Characteristic	A041		Torque boost method selection	00(Manual torque boost) / 01 (Automatic torque boost)	00	00	\times	\times
	A241	Torque boost method selection for second motor	00(Manual torque boost) / 01(Automatic torque boost)	00	00	\times	\times	
	A042	Manual torque boost value	0.0-20.0\%	1.0	1.0	\bigcirc	\bigcirc	
	A242	Manual torque boost value for second motor	0.0-20.0\%	1.0	1.0	\bigcirc	\bigcirc	
	A043	Manual torque boost frequency adjustment	0.0-50.0\%	5.0	5.0	\bigcirc	\bigcirc	
	A243	Manual torque boost frequency adjustment for second motor	0.0-50.0\%	5.0	5.0	\bigcirc	\bigcirc	
	A044	V/f characteristic curve selection	00(VC) / 01(VP 1.7th power) / 02(V/f free-setting)	00	01	\times	\times	
	A244	V/f characteristic curve selection for second motor	00(VC) / 01(VP 1.7th power) / 02(V/f free-setting)	00	01	\times	\times	
	A045	V/f gain setting	20.-100.	100.	100.	\bigcirc	\bigcirc	
DC Braking	A051	DC braking enable	00(Disabled) / 01(Enabled)	00	00	\times	\bigcirc	
	A052	DC braking frequency setting	$0.00-60.00 \mathrm{~Hz}$	0.50	0.50	\times	\bigcirc	
	A053	DC braking wait time	0.0-5.0sec.	0.0	0.0	\times	\bigcirc	
	A054	DC braking force setting	0.-70.\%	0.	0.	\times	\bigcirc	
	A055	DC braking time setting	0.0-60.0sec.	0.0	0.0	\times	\bigcirc	
	A056	DC braking edge or level detection	00(Edge) / 01(Level)	01	01	\times	\bigcirc	
	A057	DC braking force setting at the starting point	0.-70.\%	0.	0.	\times	\bigcirc	
	A058	DC braking time setting at the starting point	$0.0-60.0 \mathrm{sec}$.	0.0	0.0	\times	\bigcirc	
	A059	DC braking carrier frequency setting	$0.5-12 \mathrm{kHz}$ (To be derated) $\{0.5-8 \mathrm{kHz}\}^{(* 1)}$	3.0	3.0	\times	\times	
Upper/ Lower Limit and Jump Frequency	A061	Frequency upper limit setting	0.00, Starting frequency to maximum frequency	0.00	0.00	\times	\bigcirc	
	A261	Frequency upper limit setting for second motor	0.00 , Starting frequency to maximum frequency for second motor	0.00	0.00	\times	\bigcirc	
	A062	Frequency lower limit setting	0.00 , Starting frequency to maximum frequency	0.00	0.00	\times	\bigcirc	
	A262	Frequency lower limit setting for second motor	0.00 , Starting frequency to maximum frequency for second motor	0.00	0.00	\times	\bigcirc	
	A063	Jump frequency (1) setting	0.00-99.99/100.0-400.0Hz	0.00	0.00	\times	\bigcirc	
	A064	Jump frequency width (1) setting	$0.00-10.00 \mathrm{~Hz}$	0.50	0.50	\times	\bigcirc	
	A065	Jump frequency (2) setting	$0.00-99.99 / 100.0-400.0 \mathrm{~Hz}$	0.00	0.00	\times	\bigcirc	
	A066	Jump frequency width (2) setting	$0.00-10.00 \mathrm{~Hz}$	0.50	0.50	\times	\bigcirc	
	A067	Jump frequency (3) setting	$0.00-99.99 / 100.0-400.0 \mathrm{~Hz}$	0.00	0.00	\times	\bigcirc	
	A068	Jump frequency width (3) setting	$0.00-10.00 \mathrm{~Hz}$	0.50	0.50	\times	\bigcirc	
	A069	Acceleration hold frequency setting	$0.00-99.99 / 100.0-400.0 \mathrm{~Hz}$	0.00	0.00	\times	\bigcirc	
	A070	Acceleration stop time setting	0.0-60.0sec.	0.0	0.0	\times	\bigcirc	
PID Control	A071	PID function enable	00(Disable) / 01(Enable)	00	00	\times	\bigcirc	
	A072	PID proportional gain	0.2-5.0	1.0	1.0	\bigcirc	\bigcirc	
	A073	PID integral gain	0.0-3600.0sec.	1.0	1.0	\bigcirc	\bigcirc	
	A074	PID differential gain	0.0-100.0sec.	0.0	0.0	\bigcirc	\bigcirc	
	A075	Process variable scale conversion	0.01-99.99\%	1.00	1.00	\times	\bigcirc	
	A076	Process variable source setting	00(at OI) / 01(at O)	00	00	\times	\bigcirc	
AVR Function	A081	AVR function selection	00(Always ON) / 01(Always OFF) / 02(OFF during deceleration)	02	02	\times	\times	
	A082	AVR voltage selection	200/215/220/230/240, 380/400/415/440/460/480V	230/400	230/460	\times	\times	
Operation Mode and Accel./ Decel. Function	A085	Operation mode selection	00(Normal operation) / 01(Energy-saving operation)	00	00	\times	\times	
	A086	Energy saving mode tuning	0.0-100.0sec.	50.0	50.0	\bigcirc	\bigcirc	
	A092	Acceleration time (2)	0.01-99.99/100.0-999.9/1000.-3600.sec.	15.00	15.00	\bigcirc	\bigcirc	
	A292	Acceleration time (2) for second motor	0.01-99.99/100.0-999.9/1000.-3600.sec.	15.00	15.00	\bigcirc	\bigcirc	
	A093	Deceleration time (2)	0.01-99.99/100.0-999.9/1000.-3600.sec.	15.00	15.00	\bigcirc	\bigcirc	
	A293	Deceleration time (2) for second motor	0.01-99.99/100.0-999.9/1000.-3600.sec.	15.00	15.00	\bigcirc	\bigcirc	
	A094	Select method to switch to second accel./ decel. profile	00(2CH input from terminal) / 01(Transition frequency)	00	00	\times	\times	
	A294	Select method to switch to second accel./ decel. profile for second motor	00(2CH input from terminal) / 01(Transition frequency)	00	00	\times	\times	
	A095	Accel(1) to Accel(2) frequency transition point	$0.00-99.99 / 100.0-400.0 \mathrm{~Hz}$	0.00	0.00	\times	\times	
	A295	Accel(1) to Accel(2) frequency transition point for second motor	$0.00-99.99 / 100.0-400.0 \mathrm{~Hz}$	0.00	0.00	\times	\times	
	A096	Decel(1) to Decel(2) frequency transition point	$0.00-99.99 / 100.0-400.0 \mathrm{~Hz}$	0.00	0.00	\times	\times	
	A296	Decel(1) to Decel(2) frequency transition point for second motor	0.00-99.99/100.0-400.0Hz	0.00	0.00	\times	\times	
	A097	Acceleration curve selection	00(Linear)/ 01(S-curve)/ 02(U-shape)/ 03(Reverse U-shape)	00	00	\times	\times	
	A098	Deceleration curve selection	00(Linear)/ 01(S-curve)/ 02(U-shape)/ 03(Reverse U-shape)	00	00	\times	\times	
External Frequency Tuning	A101	OI-L input active range start frequency	$0.00-400.0 \mathrm{~Hz}$	0.00	0.00	\times	\bigcirc	
	A102	OI-L input active range end frequency	$0.00-400.0 \mathrm{~Hz}$	0.00	60.00	\times	\bigcirc	
	A103	OI-L input active range start voltage	0.-100.\%	20	20	\times	\bigcirc	
	A104	OI-L input active range end voltage	0.-100.\%	100	100	\times	\bigcirc	
	A105	OI-L input start frequency enable	00 (External frequency output zero reference) / 01(0Hz)	01	01	\times	\bigcirc	
	A111	O2-L input active range start frequency	$-400.0-400.0 \mathrm{~Hz}$	0.00	0.00	\times	\bigcirc	
	A112	O2-L input active range end frequency	$-400.0-400.0 \mathrm{~Hz}$	0.00	0.00	\times	\bigcirc	
	A113	O2-L input active range start voltage	-100.-100.\%	-100	-100	\times	\bigcirc	
	A114	O2-L input active range end voltage	-100.-100.\%	100	100	\times	\bigcirc	
Accel./ Decel. Curve	A131	Acceleration curve constants setting	01(Smallest deviation)-10(Largest deviation)	02	02	\times	\bigcirc	
	A132	Deceleration curve constants setting	01(Smallest deviation)-10(Largest deviation)	02	02	\times	\bigcirc	

OB Group : Fine Tuning Functions

Code		Name	Description	Default Setting		Run-time Setting	Rn-ime Data Eift (Eradedab03i)	
		-FE(CE)		-FU2(UL)				
Restart after Instantaneous Power Failure	b001		Selection of automatic restart mode	00 (Alarm output after trip, automatic restart disable) / 01 (Restart at 0 Hz) $/ 02$ (Resume operation after frequency matching) / 03 (Resume previous frequency after frequency matching, then decelerate to stop and display trip information)	00	00	\times	\bigcirc
	b002	Allowable instantaneous power failure time	0.3-1.0sec.	1.0	1.0	\times	\bigcirc	
	b003	Time delay enforced before motor restart	0.3-100.0sec.	1.0	1.0	\times	\bigcirc	
	b004	Instantaneous power failure and under-voltage trip enable	00(Disable) / 01(Enable) / 02(Disable during stop and ramp to stop)	00	00	\times	\bigcirc	
	b005	Number of restarts after instantaneous power failure and under-voltage trip	00(16 times) / 01(Always restart)	00	00	\times	\bigcirc	
	b006	Phase loss detection enable	00(Disable) / 01(Enable)	01	01	\times	\bigcirc	
	b007	Restart frequency setting	$0.00-99.99 / 100.0-400.0 \mathrm{~Hz}$	0.00	0.00	\times	\bigcirc	
Electronic Thermal	b012	Level of electronic thermal setting	$0.20 *$ rated current-1.20*rated current	Rated current	Rated current	\times	\bigcirc	
	b212	Level of electronic thermal setting for second motor	0.20*rated current-1.20*rated current	Rated current	Rated current	\times	\bigcirc	
	b013	Electronic thermal characteristics	00(Reduced torque) / 01(Constant torque) / 02(V/f free-setting)	01	00	\times	\bigcirc	
	b213	Electronic thermal characteristics for second motor	00(Reduced torque) / 01(Constant torque) / 02(V/f free-setting)	01	00	\times	\bigcirc	
	b015	Free-setting electronic thermal frequency (1)	0. $-400 . \mathrm{Hz}$	0.	0.	\times	\bigcirc	
	b016	Free-setting electronic thermal current (1)	0.0-1000.A	0.0	0.0	\times	\bigcirc	
	b017	Free-setting electronic thermal frequency (2)	0. $-400 . \mathrm{Hz}$	0.	0.	\times	\bigcirc	
	b018	Free-setting electronic thermal current (2)	0.0-1000.A	0.0	0.0	\times	\bigcirc	
	b019	Free-setting electronic thermal frequency (3)	0. $-400 . \mathrm{Hz}$	0.	0.	\times	\bigcirc	
	b020	Free-setting electronic thermal current (3)	0.0-1000.A	0.0	0.0	\times	\bigcirc	
Overload Restriction	b021	Overload restriction operation mode	00(Disable) / 01 (Enable during accel./constant speed) / 02(Enable during constant speed)	01	01	\times	\bigcirc	
	b022	Overload restriction setting	0.50*rated current-1.50*rated current	Rated current* 1.20	Rated current* 1.10	\times	\bigcirc	
	b023	Deceleration rate at overload restriction	0.10-30.00	1.00	15.00	\times	\bigcirc	
	b024	Overload restriction operation mode (2)	00 (Disable) / 01(Enable during accel./ constant speed) / 02(Enable at constant speed)	01	01	\times	\bigcirc	
	b025	Overload restriction setting (2)	0.50**ated current ${ }^{1.50}$ *rated current	Rated current* 1.20	Rated current* 1.20	\times	\bigcirc	
	b026	Deceleration rate at overload restriction (2)	0.10-30.00	1.00	1.00	\times	\bigcirc	
Software Lock	b031	Software lock mode selection	00 (All parameters except b031 are locked when SFT from terminal is on) / 01(All parameters except b031 and output frequency F001 are locked when SFT from terminal is on) / 02(All parameters except b031 are locked) / 03(All parameters except b031 and output frequency F001 are locked) / 10(Run-time data edit mode)	01	01	\times	\bigcirc	
Others	b034	RUN/ power-on warning time	0.-9999./1000-6553(10,000-65,5300)hr (Output to intelligent terminal)	0.	0.	\times	\bigcirc	
	b035	Rotational direction restriction	00(Enable for both directions) / 01(Enable for forward) / 02(Enable for reverse)	00	00	\times	\times	
	b036	Reduced voltage soft start selection	00(Short)-06(Long)	06	06	\times	\bigcirc	
	b037	Function code display restriction	00(All) / 01(Utilized functions) / 02(User-selected functions only)	01	01	\times	\bigcirc	
	b080	AM terminal analog meter adjustment	0-255	150	150	\bigcirc	\bigcirc	
	b081	FM terminal analog meter adjustment	0-255	60	60	\times	\bigcirc	
	b082	Start frequency adjustment	$0.10-9.99 \mathrm{~Hz}$	0.50	0.50	\times	\bigcirc	
	b083	Carrier frequency setting	$0.5-12.0 \mathrm{kHz}$ (To be derated) $\{0.5-8 \mathrm{kHz}\}{ }^{*} 1$)	3.0	3.0	\times	\bigcirc	
	b084	Initialization mode	00(Trip history clear) / 01(Parameter initialization) / 02(Trip history clear and parameter initialization)	00	00	\times	\times	
	b085	Country code for initialization	00(Japanese version) / 01(European version) / 02(North American version)	01	02	\times	\times	
	b086	Frequency scaling conversion factor	0.1-99.9	1.0	1.0	\bigcirc	\bigcirc	
	b087	STOP key enable	00(Enable) / 01(Disable)	00	00	\times	\bigcirc	
	b088	Resume on free-run stop cancellation mode	00 (Restart at 0 Hz) / 01(Resume operation after frequency matching)	00	00	\times	\bigcirc	
	b090	Dynamic braking usage ratio	0.0-100.0\%	0.0	0.0	\times	\bigcirc	
	b091	Stop mode selection	00(Deceleration and stop) / 01(Free-run stop)	00	00	\times	\times	
	b092	Cooling fan control	00(Fan is always ON) / 01(Fan is ON during RUN including 5min. afetr power-on and stop)	00	00	\times	\times	
	b095	Dynamic braking control	00(Disable) / 01(Enable during run) / 02(Enable during stop)	00	00	\times	\bigcirc	
	b096	Dynamic braking activation level	330-380/660-760V	360/720	360/720	\times	\bigcirc	
	b098	Thermistor for thermal protection control	00(Disable) / 01(PTC enable) / 02(NTC enable)	00	00	\times	\bigcirc	
	b099	Thermistor for thermal protection level setting	0.0-9999	3000	3000	\times	\bigcirc	
Free-setting V/f pattern	b100	Free-setting V/f frequency (1)	0.-Free-setting V/f frequency (2)	0.0	0.0	\times	\times	
	b101	Free-setting V/f voltage (1)	0.0-800.0V	0.0	0.0	\times	\times	
	b102	Free-setting V/ffrequency (2)	0.-Free-setting V/ff frequency (3)	0.0	0.0	\times	\times	
	b103	Free-setting V/f voltage (2)	0.0-800.0V	0.0	0.0	\times	\times	
	b104	Free-setting V/ffrequency (3)	0.-Free-setting V/ff frequency (4)	0.0	0.0	\times	\times	
	b105	Free-setting V/f voltage (3)	0.0-800.0V	0.0	0.0	\times	\times	
	b106	Free-setting V/ff frequency (4)	0.-Free-setting V/ff frequency (5)	0.0	0.0	\times	\times	
	b107	Free-setting V/f voltage (4)	0.0-800.0V	0.0	0.0	\times	\times	
	b108	Free-setting V/ffrequency (5)	0.-Free-setting V/ff frequency (6)	0.0	0.0	\times	\times	
	b109	Free-setting V/f voltage (5)	0.0-800.0V	0.0	0.0	\times	\times	
	b110	Free-setting V/ff frequency (6)	0.-Free-setting V/ff frequency (7)	0.0	0.0	\times	\times	
	b111	Free-setting V/f voltage (6)	0.0-800.0V	0.0	0.0	\times	\times	
	b112	Free-setting V/ff frequency (7)	0. $-400 . \mathrm{Hz}$	0.0	0.0	\times	\times	
	b113	Free-setting V/f voltage (7)	0.0-800.0V	0.0	0.0	\times	\times	

OC Group: Intelligent Terminal Functions

Code
Name
Description

Intelligent Input Terminal Setting	C001	Terminal (1) function
	C002	Terminal (2) function
	C003	Terminal (3) function
	C004	Terminal (4) function
	C005	Terminal (5) function
Intelligent Input Terminal State Setting	C011	Terminal (1) active state
	C012	Terminal (2) active state
	C013	Terminal (3) active state
	C014	Terminal (4) active state
	C015	Terminal (5) active state
	C019	Terminal FW active state
Intelligent Output Terminal Setting	C021	Terminal (11) function
	C022	Terminal (12) function
	C026	Alarm relay terminal function
	C027	FM signal selection
	C028	AM signal selection
	C029	AMI signal selection
Intelligent Output Terminal State and Output Level setting	C031	Terminal (11) active state
	C032	Terminal (12) active state
	C036	Alarm relay terminal active state
	C040	Overload signal output mode
	C041	Overload level setting
	C042	Arrival frequency setting for acceleration
	C043	Arrival frequency setting for deceleration
	C044	PID deviation level setting
	C061	Electronic thermal warning level setting
Serial Communication	C070	Data command method
	C071	Communication speed selection
	C072	Node allocation
	C073	Communication data length selection
	C074	Communication parity selection
	C075	Communication stop bit selection
	C078	Communication wait time
Analog Meter Setting	C081	O input span calibration
	C082	Ol input span calibration
	C083	O2 input span calibration
	C085	Thermistor input tuning
	C086	AM terminal offset tuning
	C087	AMI terminal meter tuning
	C088	AMI terminal offset tuning
Others	C091	Debug mode enable
	C101	UP/DOWN memory mode selection
	C102	Reset mode selection
	C103	Restart frequency after reset
	C121	O input zero calibration
	C122	Ol input zero calibration
	C123	O2 input zero calibration

01(RV:Reverse) / 02(CF1:Multipeed(1)) / 03(CF2:Multispeed(2)) / 04(CF3:Multispeed(3)) / 05(CF4:Multispeed(4)) / 06(JG:Jogging) / 07(DB:External DC braking) / 08(SET:Second motor constants setting) / 09(2CH:Second accel./decel.) /
11(FRS:Free-run stop) / 12 (EXT:External trip) / 13 (USP:Unattended start protection) 11(FRS:Free-run stop) / 12(EXT:External trip) / 13(USP:Unattended start protection) /
14(CS:Change to/from commercial power supply) / 15(SFT:Software lock) 14(CS:Change to/from commercial power supply) / 15 (SFT:Software lock) /
16 (AT:Analog input selection) /18(RS:Reset) / 20 (STA:3-wire start) $/ 21$ (STP:3-wire 16(AT:Analog input selection) /18(RS:Reset) / 20(STA:3-wire start) / 21(STP:3-wire hold) / 22(F/R:3-wire fwd./rev.) / 23(PID:PID On/Off) / 24(PIDC:PID reset) / 27(UP:Remote-controlled accel.) / 28(DWN:Remote-controlled decel.) /
29(UDC:Remote-controlled data clearing) / 31(OPE:Operator control) / 32(SF1:Multi-29(UDC:Remote-controlled data clearing) / 31(OPE:Operator control) / 32(SF1:Multi-
speed bit command(1) / 33(SF2:Multispeed bit command(2) / 34(SF3:Multispeed bit command(3) / 35(SF4:Multispeed bit command(4) / 36(SF5:Multispeed bit command(5) / 37(SF6:Multispeed bit command(6) / 38(SF7:Multispeed bit command(7) / 39(OLR:Overload limit change)/ 49(ROK: RUN permissive)(*1) / 255(NO:Not selected) $00(\mathrm{NO}) / 01(\mathrm{NC})$
00(RUN:Run signal) / 01(FA1:Frequency arrival signal (at the set frequency))/ 02(FA2:Frequency arrival signal (at or above the set frequency)) / 03(OL:Overload advance notice signal) / 04(OD:Output deviation for PID control) / 05(AL:Alarm signal) / 06(FA3:Frequency arrival signal (only at the set frequency)) / 08(IP:Instantaneous power failure signal) / 09(UV:Under-voltage signal)/ 11(RNT:RUN time over) / 12(ONT:Power-on time over) / 13(THM:Thermal alarm) / 27(RMD: Operator RUN command signal)(*1)
00 (Output frequency) / 01(Output current) / 03(Digital output frequency-only at C027) / 04(Output voltage) / 05(Power) / 06(Thermal load ratio) / 07(LAD frequency)
$00(\mathrm{NO}) / 01(\mathrm{NC})$
$00(\mathrm{NO}) / 01(\mathrm{NC})$
$00(\mathrm{NO}) / 01(\mathrm{NC})$
00 (During accel./decel) $/ 01$ (At constant speed)
0.00^{*} rated current-2.00*rated current
$0.00-99.99 / 100.0-400.0 \mathrm{~Hz}$
$0.00-99.99 / 100.0-400.0 \mathrm{~Hz}$

$0.0-100.0 \%$

02(Operator) / 03(RS485) / 04 (Expansion card 1) / 05(Expansion card 2)
$03(2400 \mathrm{bps}) / 04(4800 \mathrm{bps}) / 05(9600 \mathrm{bps}) / 06(19200 \mathrm{bps})$

1.-32.

7(7-bit) $/ 8$ (8-bit)
00 (No parity) / 01(Even) / 02(Odd)
00(No parity) / 01 (
$0 .-1000 . \mathrm{msec}$.
0.- 9999./1000-6553(10,000-65,530)
0. - 9999./1000-6553(10,000-65,530)
$0 .-9999 . / 1000-6553(10,000-65,530)$
$0.0-1000$.
$0.0-10.0 \mathrm{~V}$
$0.0-10.0 \mathrm{~V}$
$0 .-255$.
$0 .-20.0 \mathrm{~mA}$
00 (No display) / 01(Display)
00 (Clear previous frequency) $/ 01$ (Keep previous frequency)
00 (Cancel trip state when reset signal turns ON) / 01 (Cancel trip state when 00(Cancel trip state when reset signal turns ON) / 01(Cancel trip state when
reset signal turns OFF) / O2(Cancel trip state when reset signal turns ON(Enreset signal turns OFF)/
able during trip state))
00 (Restart at 0 Hz) $/ 01$ (Resume operation after frequency matching)
0.- 9999./1000-6553(10,000-65,530)
0.- 9999./1000-6553(10,000-65,530)
$0 .-9999 . / 1000-6553(10,000-65,530)$
$0.20-75.0(\mathrm{~kW})\{-160(\mathrm{~kW})\}\}^{*}$ *)
$0.20-75.0(\mathrm{~kW})\{-160(\mathrm{~kW})\}\left({ }^{* 2}\right)$
$2 / 4 / 6 / 8$
2/4/6/8
2/4/6/8
0.255.
$0 .-255$.

00 (Trip) / 01(Continuous operation)
00 (Trip) / 01 (Continuous operation)
00 (operation)/01 (option1)/02(option2)
$0.00-99.99 \mathrm{~s}$
$00($ trip)/01(trip after deceleration stop)/02(invalid)/03(free-run)/04(deceleration stop) 20,21,100
70,71,101
00 (trip)/01(trip after deceleration stop)/02(invalid)/03(free-run)/04(deceleration stop) $0-38$ (even only)
00 (Output freq.forced to 0 Hz ; 500 ms wait to recover)/01 (Output forced OHz ; no wait to recover)/O2(Output freq.forced to max.freq.A004)/O3(Output ferq.forced to A020/A22O)

		$\left[\begin{array}{l} \bigcirc=\text { Allowed } \\ X=\text { Not permitted } \end{array}\right]$	
Default Setting		Run-time Setting	An-ime Data Eit (Endoledabo31)
-FE(CE)	-FU2(UL)		
18	18	\times	\bigcirc
16	16	\times	\bigcirc
03	13	\times	\bigcirc
02	02	\times	\bigcirc
01	01	\times	\bigcirc
00	00	\times	\bigcirc
00	00	\times	\bigcirc
00	01	\times	\bigcirc
00	00	\times	\bigcirc
00	00	\times	\bigcirc
00	00	\times	\bigcirc
01	01	\times	\bigcirc
00	00	\times	\bigcirc
05	05	\times	\bigcirc
00	00	\times	\bigcirc
00	00	\times	\bigcirc
00	00	\times	\bigcirc
00	00	\times	\bigcirc
00	00	\times	\bigcirc
01	01	\times	\bigcirc
01	01	\times	\bigcirc
Rated current	Rated current	\times	\bigcirc
0.0	0.0	\times	\bigcirc
0.0	0.0	\times	\bigcirc
3.0	3.0	\times	\bigcirc
80	00	\times	\bigcirc
02	02	\times	\times
04	04	\times	\bigcirc
1.	1.	\times	\bigcirc
7	7	\times	\bigcirc
00	00	\times	\bigcirc
1	1	\times	\bigcirc
0.0	0.0	\times	\bigcirc
Factory set	Factory set	\bigcirc	\bigcirc
Factory set	Factory set	\bigcirc	\bigcirc
Factory set	Factory set	\bigcirc	\bigcirc
100	100	\bigcirc	\bigcirc
0.0	0.0	\bigcirc	\bigcirc
50	50	\bigcirc	\bigcirc
Factory set	Factory set	\bigcirc	\bigcirc
00	00	\times	\bigcirc
00	00	\times	\bigcirc
00	00	\bigcirc	\bigcirc
00	00	\times	0
Factory set	Factory set	\bigcirc	\bigcirc
Factory set	Factory set	\bigcirc	\bigcirc
Factory set	Factory set	\bigcirc	\bigcirc
Factory set	Factory set	\times	\times
Factory set	Factory set	\times	\times
4	4	\times	\times
4	4	\times	\times
100.	100.	\bigcirc	\bigcirc
100.	100.	\bigcirc	\bigcirc
00	00	\times	0
00	00	\times	\bigcirc
00	00	\times	\times
1.00	1.00	\times	\times
01	01	\times	\times
21	21	\times	\times
71	71	\times	\times
01	01	\times	\times
0	0	\times	\times
00	00	\times	\times
no	no	\times	\bigcirc

Main Circuit Terminals

Terminal Description

Terminal Symbol	Terminal Name
$\mathrm{R}(\mathrm{L} 1), \mathrm{S}(\mathrm{L} 2), \mathrm{T}(\mathrm{L} 3)$	Main power supply input terminals
$\mathrm{U}(\mathrm{T} 1), \mathrm{V}(\mathrm{T} 2), \mathrm{W}(\mathrm{T} 3)$	Inverter output terminals
$\mathrm{PD}(+1), \mathrm{P}(+)$	DC reactor connection terminals
$\mathrm{P}(+), \mathrm{RB}(\mathrm{RB})$	External braking resistor connection terminals
$\mathrm{P}(+), \mathrm{N}(-)$	External braking unit connection terminals
$\Theta(\mathrm{G})$	Ground connection terminal
$\mathrm{RO}(\mathrm{RO}), \mathrm{TO}(\mathrm{T} 0)$	Control power supply input terminals

Terminal Arrangement

■015-055 LFU2, HFU2, HFE2

		$\underset{(\mathbf{L 1})}{\mathbf{R}}$	$\underset{(\mathbf{L} 2)}{\mathbf{S}}$	$\underset{(L 3)}{\mathbf{T}}$	$\underset{(\mathbf{T 1})}{\mathbf{U}}$	$\underset{(\mathrm{T} 2)}{\mathbf{V}}$	$\underset{(\mathrm{T} 3)}{\mathbf{W}}$
$\begin{array}{\|l\|} \hline \text { Ro } \\ \left(\mathrm{R}_{0}\right) \end{array}$	$\begin{array}{\|l\|} \hline \text { T0 } \\ \text { (To) } \end{array}$	$\begin{aligned} & \text { PD } \\ & (+1) \end{aligned}$	$\underset{(+)}{\mathbf{P}}$	$\begin{aligned} & \mathbf{N} \\ & (-) \end{aligned}$	$\begin{aligned} & \mathbf{R B} \\ & (\mathbf{R B}) \end{aligned}$	$\begin{aligned} & \left(\frac{1}{7}\right) \\ & (\mathbf{G}) \end{aligned}$	$\begin{aligned} & (\Theta) \\ & (\mathbf{G}) \end{aligned}$

185-750HFE2, HFU2

Ro To
(R0) (TO_{0})

■110-150HFE2, 075-150HFU2/LFU2

$\begin{array}{\|c} \hline \mathbf{R} \\ \hline(\mathbf{L 1}) \end{array}$	$\underset{(\mathbf{L 2})}{\mathbf{S}}$	$\underset{(L 3)}{\mathbf{T}}$	$\begin{array}{\|c} \hline \mathbf{U} \\ (\mathbf{T 1}) \end{array}$	$\begin{gathered} \underset{(T 2)}{V} \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{W} \\ (\mathbf{T} 3) \end{gathered}$		
$\begin{aligned} & \text { PD } \\ & (+1) \end{aligned}$	$\underset{(+)}{\mathbf{P}}$	$\underset{(-)}{\mathbf{N}}$	$\begin{aligned} & \mathrm{RB} \\ & (\mathrm{RB}) \end{aligned}$	$\begin{aligned} & \binom{1}{(\mathbf{G})} \end{aligned}$	$\left(\underset{(G)}{\left(\frac{7}{)}\right)}\right.$	$\begin{aligned} & \mathbf{R O}_{\left(\mathbf{R O}_{0}\right.} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { T0 } \\ \text { (T0) } \end{array}$

$$
\begin{aligned}
& \text { 1220, 300, 450, 550, 750LFU2 Ro To } \\
& \text { 900-1320HFE2/HFU2 }
\end{aligned}
$$

()$\left._{-}^{7}\right)$
(\mathbf{G})

OScrew Diameter and Terminal Width

Main Circuit Terminals										Ro, To terminals
Model	$\begin{gathered} \text { 015-037 LFU2 } \\ \text { HFE2/HFU2 } \end{gathered}$	$\begin{gathered} \text { 055LFU2 } \\ \text { HFE2/HFU2 } \end{gathered}$	$\begin{gathered} \text { 075LFU2 } \\ \text { HFE2/HFU2 } \end{gathered}$	$\begin{gathered} \text { 110-150LFU2 } \\ \text { HFE2/HFU2 } \end{gathered}$	$\begin{gathered} \text { 185LFU2,185-370 } \\ \text { HFE2/HFU2 } \end{gathered}$	$\begin{array}{\|c\|} \hline 220-370 L F U 2, \\ 450-750 \mathrm{HFE} 2 / \mathrm{HFU} 2 \end{array}$	$\begin{gathered} 450-550 \\ \text { LFU2 } \end{gathered}$	750LFU2, 1320HFE2/HFU2	$\begin{aligned} & \text { 900-1100 } \\ & \text { HFE2/HFU2 } \end{aligned}$	All models
Screw diameter	M4	M5	M5	M6	M6	M8	M10	M10	M10	M4
Terminal width (mm)	13	13	17.5	17.5	18	23	35	40	29	9

*For ground screw of 200, 300, 450, 550 LFU2, M6 is used. For $900-1320$ HFE/HFU2, M8 is used.

Control Circuit Terminals

Terminal Arrangement

Control Circuit Terminals

Terminal Description []: Default setting (CE/UL)

PROTECTIVE FUNCTIONS

Name	Cause（s）		Display on digital operator	Display on remote operator／copy unit ERR1 ${ }^{* * * *}$
Over－current protection	The inverter output was short－circuited，or the motor shaft is locked or has a heavy load． These conditions cause excessive current for the inverter，so the inverter output is turned off．	While at constant speed	ETi	OC．Drive
		During deceleration	EDI］	OC．Drive
		During acceleration	En马	OC．Accel
Overload protection（＊1）	When a motor overload is detected by the electronic thermal function，the inverter trips and turns off its output．		E05	Over．L
Braking resistor overload protection	When the regenerative braking resistor exceeds the usage time allowance or an over－voltage caused by the stop of the BRD function is detected，the inverter trips and turns off its output．		E06	OL．BRD
Over－voltage protection	When the DC bus voltage exceeds a threshold，due to regenerative energy from the motor，the inverter trips and turns off its output．		$E \square 7$	Over．V
EEPROM error（＊2）	When the built－in EEPROM memory has problems due to noise or excessive temper－ ature，the inverter trips and turns off its output．		ED日	EEPROM
Under－voltage error	A decrease of internal DC bus voltage below a threshold results in a control circuit fault．This condition can also generate excessive motor heat or cause low torque．The inverter trips and turns off its output．		E09	Under．V
CT（Current transformer）error	If a strong source of electrical interference is close to the inverter or abnormal operations occur in the built－ in CT（Current transformer），the inverter trips and turns off its output．		E 1 ${ }^{\text {a }}$	CT
CPU error	When a malfunction in the built－in CPU has occurred，the inverter trips and turns off its output．		E 1	CPU1
External trip	When a signal to an intelligent input terminal configured as EXT has occurred，the inverter trips and turns off its output．		［12］	EXTERNAL
USP error	An error occurs when power is cycled while the inverter is in RUN mode if the Unattended Start Protection （USP）is enabled．The inverter trips and does not go into RUN mode until the error is cleared．		E 13	USP
Ground fault	The inverter is protected by the detection of ground faults between the inverter output and the motor during power－up tests．This feature protects the inverter only．		E 4	GND．FI．
Input over－voltage protection	When the input voltage is higher than the specified value，it is detected 60 seconds after power－up and the inverter trips and turns of its output．		E 15	OV．SRC
Instantaneous power failure	When power is cut for more than 15 msec ．，the inverter trips and turns off its output．If power failure contin－ ues，the error will be cleared．The inverter restarts if it is in RUN mode when power is cycled．		E 16	Inst．P－F
Inverter thermal trip	When the inverter internal temperature is higher than the specified value，the thermal sensor in the inverter module detects the higher temperature of the power devices and trips，turning off the inverter output．		EE）	OH FIN
Gate array error	Communication error has occured between CPU and gate array．		Eこ3	GA
Missing phase	One of three lines of 3－phase power supply is missing．		Eご	PH．Fail
IGBT error	When instantaneous over－current has occurred，the inverter trips and turns off its output to protect main circuit element．		E30	IGBT
Thermistor error	When the thermistor inside the motor detects temperature higher than the specified value，the inverter trips and turns off its output．		E35	TH
Expantion card 1 connection error	An error has been detected in an expantion card or at its connecting terminals．		E6鸟－E59	OP1 0－9
Expantion card 2 connection error			E70］－E99	OP2 0－9
Out of operation due to under－voltage	Due to insufficient voltage，the inverter has turned off its output and been trying to restart．If it fails to restart，it goes into the under－voltage error．		－－夏	UV．WAIT

${ }^{(* 1)}$ ）You can clear the error by pressing the Start／Reset key 10 seconds after the trip occurred．
（＊2）If an EEPROM error EOB occurs，be sure to confirm the parameter data values are still correct．

〈How to access the details about the present fault〉

CONNECTING DIAGRAM

SOURCE TYPE LOGIC

In case of 400 V class,
place a transformer for operating circuit to receive 200 V .

Terminal Name	FW, 1, 2, 3, 4,5	FM, TH	H, O, O2, OI, AM, AMI
Common	P24	CM1	L

SINK TYPE LOGIC

In case of 400 V class,

place a transformer for operating circuit to receive 200 V .

Terminal Name	FW, $1,2,3,4,5$, FM, TH	H, O, O2, OI, AM, AMI
Common	CM1	L

CONNECTING TO PLC

1. USING INTERNAL POWER SUPPLY OF THE INVERTER

(1) Sink type logic

2. USING EXTERNAL POWER SUPPLY

(2) Source type logic

(2) Source type logic

(Note:Be sure to turn on the inverter after turning on the PLC and its external power supply to prevent the parameters in the inverter from being modified.)

WIRING and ACCESSORIES

Note: An EMI filter is required for European EMC directive and C-Tick, but the others are not for this purpose.

ACCESSORIES

OOPERATOR

Model
Potentiometer
OPE-S
Remo
OPE-SR/SRE
SRW-OEX
*OPE-SRE: English overlay
OCABLE FOR OPERATOR
Model
ICS-1
Cable Length
ICS-3

REMOTE OPERATOR SRW-0EX(Optional)

EXPANSION CARD

Up to two expansion cards can be installed inside the L300P.

Digital Input Expansion Card

SJ-DG
Output frequency, acceleration time, deceleration time, and torque limit can be set by a digital output device such as PLC, etc. (Binary or BCD)

Connecting Diagram

Standard Specifications

| Input | Specification | | |
| :---: | :---: | :---: | :---: | :---: |
| | Data setting signal | NO contact input (sink/ source compatible) | D0,D1, ... between D15 and PLCB |
| | Strobe signal | | |
| Output | Sequenceerror signal (Datainput error signal) | Open collector output (sink/ source compatible) | DC+27V 50mA max., between SEQand CMB |
| Power supply | Power supply for interface | DC+24V 90mA max., between P24B and CM1 | |

DeviceNet ${ }^{\text {TM }}$ Expansion Card

SJ-DN

Specifications

General data	Applicable DeviceNet specification	Volume 1-Relesse 2.0 Volume 2-Relesse 2.0	
	Vendor name	Hitachi, Ltd.	Vendor ID $=74$
	Device profile name	Slave DC Drive	Profile No.=13
Physical conformance data	Network consumption current	S0mA	
	Connector type	Open connector	
	Isolation of physical layer	Yes	
	Support LED	Module status / network status	
	MAC ID setting	By digital operator	
	Default MAC ID	63	
	Transmission baud rate setting	By digital operator	
	Support transmission baud rate	Group 2 only server	
	Pre-defined master/slave connection set	None	
	UCMM Support	Explicit message connection, Polled I/Oconnection	
	Support connection	Yes	

Connector specifications

Manufacturer		
Phoenix Contact		
MSTB 2.5/5-ST-5.08AU		
Cable connection		
No Signal Cable color 1 V- Black 2 CAN_L Blue 3 Drain - 4 CAN_H White 5 V+ Red		

[^3]

PROFIBUS ${ }^{\circledR}$ Expansion Card

SJ-PBT

- Specifications

Support profile	Variable Speed Drive (Order no. 3.072)
Transmission method	RS-485
Connector type	Open connector (6 poles)
Support file	GSD file
ASIC chip	VPC3+ (Made by Profichip)
Maximum bus length	100 m at 12Mbps, 1200m at 9.6kbps(No rooter used for both conditions)
Maximum number of connectable nodes	126 (Rooter used), 32(No rooter used)
Termination support	Yes (Bus topology termination enable)
Support baud rate	9.6 kbps to 12Mbps (Baud rate auto-detecting function equipped)
Communication specification	Master/slave
Support LED	Fieldbus ON/Off-line
	Fieldbus diagnosis
Communication Status	

Connector specifications

Manufacturer		Model Code
Phoenix Contact		MC 1.5/6-ST-3.81
Cable connection		
No	Signal name	Function
1	NET-A	NET-A input connection
2	NET-B	NET-B input connection
3	Shield	Cable shield connection
4	NET-A	NET-A input connection
5	NET-B	NET-B input connection
6	Shield	Cable shield connection

Note: PROFIBUS is a registered trademark of Profibus Nutzer Organization.

Dimensional drawings [Unit: mm]

LONWORKS ${ }^{\circledR}$ Expansion Card

SJ-LW

-Specifications

Device Class	Variable Speed Drive
Transmission method	FT-10A(Fre Topology Twisted Pair Transceiver)
Connector type	Open connector
Lonmark Object Support	0000-Node Object 6010-Variable Speed Motor Drive
	XIF
Neuron Chip	TMPN3120FE5M
Max. bus length	2700 m
Max. length between nodes	500 m
Max. nodes number	32,385
Termination support	FT (Free topology termination enable) NO (Termination disable) BUS (Bus topology termination enable)
Support transmission baudrate	$78 k b p s$ (Fixed)
Data type	Pier to Pier
Support LED	Power /Inverter LON diagnosis/ Service Communication Status

Connector specifications

Manufacturer	Model Code
Phoenix Contact	MC 1.5/3-ST-3.81

- Dimensional drawings [Unit: mm]

-LONWORKS is a registered trademark of Echelon Corporation
- Cable connection

No	Signal name	Function
1	Shield	Cable shield connection
2	NET-A	NET-A input connection
3	NET-B	NET-B input connection

Note: Network function must be supported by the software of the inverter used with SJ-DN, SJ-PBT, or SJ-LW.
For the detail, please contact Hitachi sales office.

FOR COM PACT PANEL

Heat accumulation in the panel can be reduced by arranging inverter heat sink outside.

- Typical torque performance based on V/f pattern (top) is shown below.

DERATING DATA

The L300P series can be used at ambient temperature of $-10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
However, when using at $40^{\circ} \mathrm{C}$ or over, derating is required.
(1)Ambient temperature $40^{\circ} \mathrm{C}$

(2)Ambient temperature $50^{\circ} \mathrm{C}$

FOR CORRECT OPERATION

Application to Motors

[Application to general-purpose motors]

Operating frequency	The overspeed endurance of a general-purpose motor is 120% of the rated speed for 2 minutes (JIS C4,004). For operation at higher than 60 Hz , it is required to examine the allowable torque of the motor, useful life of bearings, noise, vibration, etc. In this case, be sure to consult the motor manufacturer as the maximum allowable rpm differs depending on the motor capacity, etc.
Torque characteristics	The torque characteristics of driving a general-purpose motor with an inverter differ from those of driving it using commer- cial power (starting torque decreases in particular). Carefully check the load torque characteristic of a connected machine and the driving torque characteristic of the motor.
Motor loss and temperature increase	An inverter-driven general-purpose motor heats up quickly at lower speeds. Consequently, the continuous torque level(output) will decrease at lower motor speeds. Carefully check the torque characteristics vs speed range requirements.
Noise	When run by an inverter, a general-purpose motor generates noise slightly greater than with commercial power.

[Application to special motors]

Gear motor	The allowable rotation range of continuous drive varies depending on the lubrication method or motor manufacturer. (Par- ticularly in case of oil lubrication, pay attention to the low frequency range.)
Brake-equipped motor	For use of a brake-equipped motor, be sure to connect the braking power supply from the primary side of the inverter.
Pole-change motor	There are different kinds of pole-change motors (constant output characteristic type, constant torque characteristic type, etc.), with different rated current values. In motor selection, check the maximum allowable current for each motor of a different pole count. At the time of pole changing, be sure to stop the motor.
Submersible motor	The rated current of a submersible motor is significantly larger than that of the general-purpose motor. In inverter selection, be sure to check the rated current of the motor. Also see: Application to the 400V-class motor.
Explosion-proof motor	Inverter drive is not suitable for a safety-enhanced explosion-proof type motor. The inverter should be used in combination with a pressure-proof explosion-proof type motor. *Explosion-proof verification is not available for L300P Series. For explosion-proof operation, use other series of motors.
Synchronous (MS) motor High-speed (HFM) motor	In most cases, the synchronous (MS) motor and the high-speed (HFM) motor are designed and manufactured to meet the specifications suitable for a connected machine. As to proper inverter selection, consult the manufacturer.
Single-phase motor	A single-phase motor is not suitable for variable-speed operation by an inverter drive. Therefore, use a three-phase motor.

[Application to the 400V-class motor]

A system applying a voltage-type PWM inverter with IGBT may have surge voltage at the motor terminals resulting from the cable constants including the cable length and the cable laying method. Depending on the surge current magnification, the motor coil insulation may be degraded. In particular, when a
400 V -class motor is used, a longer cable is used, and critical loss can occur, take the following countermeasures:
(1) install the LCR filter between the inverter and the motor,
(2) install the AC reactor between the inverter and the motor, or
(3) enhance the insulation of the motor coil.

Notes on Use

[Drive]

Run/Stop	Run or stop of the inverter must be done with the keys on the operator panel or through the control circuit terminals. Do not operate by installing a electromagnetic contactor (Mg) in the main circuit.
Emergency motor stop	When the protective function is operating or the power supply stops, the motor enters the free run stop state. When an emergency stop is required or when the motor should be kept stopped, use of a mechanical brake should be considered.
High-frequency operation	A max. 400 Hz can be selected on the L300P Series. However, a two-pole motor can attain up to approx. 24,000 rpm, which is extremely dangerous. Therefore, carefully make selection and settings by checking the mechanical strength of the motor and connected machines. Consult the motor manufacturer when it is necessary to drive a standard (general-purpose) motor above 60 Hz.

[Installation location and operating environment]

Avoid installation in areas of high temperature, excessive humidity, or where moisture can easily collect, as well as areas that are dusty, subject to corrosive gasses, mist of liquid for grinding, or salt. Install the inverter away from direct sunlight in a well-ventilated room that is free of vibration. The inverter can be operated in the ambient temperature range from -10 to $50^{\circ} \mathrm{C}$. (Carrier frequency and output current must be reduced in the range of 40 to $50^{\circ} \mathrm{C}$.)

Installation of an AC reactor on the input side

Using a private power generator

In the following examples involving a general-purpose inverter, a large peak current flows on the main power supply side, and may destroy the converter module. Where such situations are foreseen or the connected equipment must be highly reliable, install an AC reactor between the power supply and the inverter. Also, where influence of indirect lightning strike is possible, install a lightning conductor.
(A) The unbalance factor of the power supply is 3% or higher. (Note)
(B) The power supply capacity is at least 10 times greater than the inverter capacity (the power supply capacity is 500 kVA or more).
(C) Abrupt power supply changes are expected.

Examples:
(1) Several inverters are interconnected with a short bus.
(2) A thyristor converter and an inverter are interconnected with a short bus.
(3) An installed phase advance capacitor opens and closes.

In cases (A), (B) and (C), it is recommended to install an AC reactor on the main power supply side.
Note: Example calculation with $\mathrm{V}_{\mathrm{RS}}=205 \mathrm{~V}$, V S $=201 \mathrm{~V}, \mathrm{~V}_{\mathrm{TR}}=200 \mathrm{~V}$
VRS : R-S line voltage, VSt : S-T line voltage, VTR : T-R line voltage
Unbalance factor of voltage $=\frac{\text { Max. line voltage (min.) }- \text { Mean line voltage }}{\text { Mean line voltage }} \times 100$

$$
=\frac{V_{\text {RS }}-\left(V_{\text {RS }}+V_{S T}+V_{T R}\right) / 3}{\left(V_{\text {RS }}+V_{S T}+V_{T R}\right) / 3} \times 100=\frac{205-202}{202} \times 100=1.5(\%)
$$

An inverter run by a private power generator may overheat the generator or suffer from a deformed output voltage waveform of the generator. Generally, the generator capacity should be five times that of the inverter (kVA) in a PWM control system, or six times greater in a PAM control system.

Notes on Peripheral Equipment Selection

Wiring connections		(1)Be sure to connect main power wires with $R(L 1), S(L 2)$, and $T(L 3)$ (input) terminals and motor wires to $U(T 1), V(T 2)$, and $\mathrm{W}(\mathrm{T} 3)$ terminals (output). (Incorrect connection will cause an immediate failure.) (2)Be sure to provide a grounding connection with the ground terminal (\oplus) $)$.
Wiring between inverter and motor	Electromagnetic contactor	When an electromagnetic contactor is installed between the inverter and the motor, do not perform on-off switching during running operation.
	Thermal relay	When used with standard applicable output motors (Hitachi standard three-phase squirrel-cage four-pole motors), the L300P Series does not need a thermal relay for motor protection due to the internal electronic protective circuit. A thermal relay, however, should be used: - during continuous running outside a range of 30 to 60 Hz . - for motors exceeding the range of electronic thermal adjustment (rated current). - when several motors are driven by the same inverter; install a thermal relay for each motor. - The RC value of the thermal relay should be more than 1.1 times the rated current of the motor. Where the wiring length is 10 m or more, the thermal relay tends to turn off readily. In this case, provide an AC reactor on the output side or use a current sensor.
Installing a circuit breaker		Install a circuit breaker on the main power input side to protect inverter wiring and ensure personal safety. Choose an inverter-compatible circuit breaker. The conventional type may malfunction due to harmonics from the inverter. For more information, consult the circuit breaker manufacturer.
Wiring distance		The wiring distance between the inverter and the remote operator panel should be 20 meters or less. When this distance is exceeded, use CVD-E (current-voltage converter) or RCD-E (remote control device). Shielded cable should be used on the wiring. Beware of voltage drops on main circuit wires. (A large voltage drop reduces torque.)
Earth leakage relay		If the earth leakage relay (or earth leakage breaker) is used, it should have a sensitivity level of 15 mA or more (per inverter).
Phase advance capacitor		Do not use a capacitor for power factor improvement between the inverter and the motor because the high-frequency components of the inverter output may overheat or damage the capacitor

High-frequency Noise and Leakage Current

(1) High-frequency components are included in the input/output of the inverter main circuit, and they may cause interference in a transmitter, radio, or sensor if used near the inverter. The interference can be minimized by attaching noise filters (option) in the inverter circuitry.
(2) The switching action of an inverter causes an increase in leakage current. Be sure to ground the inverter and the motor.

Lifetime of Primary Parts

Because a smoothing capacitor deteriorates as it undergoes internal chemical reaction, it should normally be replaced every five years. Be aware, however, that its life expectancy is considerably shorter when the inverter is subjected to such adverse factors as high temperatures or heavy loads exceeding the rated current of the inverter.
The approximate lifetime of the capacitor is as shown in the figure at the right when it is used 12 hours daily (according to the "Instructions for Periodic Inspection of General-Purpose Inverter" (JEMA)).
Also, such moving parts (cooling fan) should be replaced. Maintenance inspection and parts replacement must be performed by only specified trained personnel.

Precaution for Correct Usage

- Before use, be sure to read through the Instruction Manual to insure proper use of the inverter.
- Note that the inverter requires electrical wiring; a trained specialist should carry out the wiring.
- The inverter in this catalog is designed for general industrial applications. For special applications in fields such as aircraft, outer space, nuclear power, electrical power, transport vehicles, clinics, and underwater equipment, please consult with us in advance.
- For application in a facility where human life is involved or serious losses may occur, make sure to provide safety devices to avoid a serious accident.
- The inverter is intended for use with a three-phase AC motor. For use with a load other than this, please consult with us.

HITACHI

[^0]: - Windows is a registered trademark of Microsoft Corp. in the U.S. and other countries.

[^1]: *1: Up to 30kW.
 An optional conduit box is required for 37 kW to 55 kW to meet NEMA 1

[^2]: *1: Up to 30kW.
 An optional conduit box is required for 37 kW to 55 kW to meet NEMA 1

 * 2: The protection method conforms to JEM 1030 / NEMA(U.S.).
 * 3: The applicable motor refers to Hitachi standard 3-phase motor (4-pole). To use other motors, care must be taken to prevent the rated motor current $(50 \mathrm{~Hz})$ from exceeding the rated output current of the inverter.

[^3]: Note: Communication power supply (24VDC) is required in system configuration

